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Abstract

In a free electron laser (FEL), the electron bunch energy profile at the undulator
entrance can have temporal structures. In this paper, we derive analytical
expressions for the FEL in the undulator, in the case of the electron bunch
having both energy chirp and energy curvature. The FEL properties are studied
analytically by convoluting a Gaussian seed laser with the FEL Green’s function
obtained by solving the coupled Vlasov–Maxwell equations. In particular, for
different ratios of the temporal duration of the seed laser and that of the Green’s
function, interesting behavior is revealed.

PACS numbers: 41.60.Cr, 43.58.Ry

(Some figures in this article are in colour only in the electronic version)

1. Introduction

An x-ray free electron laser (FEL) calls for a high quality electron bunch with a low emittance,
a high peak current and a high energy [1]. During the acceleration, bunch compression
and transportation, the electron bunch is subjected to the radio frequency (rf) curvature and
wakefield effects. Thus, the energy profile of the electron bunch coming into the undulator can
have temporal structures. These properties will impact the FEL process in the undulator. In
this paper, using the Green’s function derived in an accompanied paper [2] for the case when
the electron bunch has an initial energy chirp and an energy curvature, we derive analytical
expressions for the FEL. Then the impact of the electron bunch initial energy profile on
the seeded FEL is studied. The effects of the electron bunch initial energy chirp on the
FEL performance and possible short-pulse generation have been studied for self-amplified
spontaneous emission (SASE) FEL [3, 4], and a seeded FEL as well [5, 6]. In the later
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case, the situation is complicated by the interplay of the electron energy chirp and a possible
frequency chirp in the seed laser. In this paper, we further include the effect from a possible
energy curvature along the electron bunch when it enters the undulator.

2. FEL radiation along the undulator

To evaluate the radiation envelope of a seeded FEL amplifier we use the integral representation
provided in [2], which takes into account the effects of both a linear energy chirp and a quadratic
energy curvature along the electron bunch. The integral representation has been derived by
solving the coupled set of Vlasov and Maxwell equations which describe the evolution of the
electrons and the radiation fields [7].

2.1. Integral representation of the FEL

We use the notation of [3, 5, 7], which has been adopted in the accompanied paper [2].
Dimensionless variables are introduced as Z = kwz, θ = (k0 +kw)z−ω0t , where k0 = 2π/λ0,

ω0 = k0c and kw = 2π/λw with λ0 being the radiation wavelength, λw being the undulator
period and c being the speed of light in the vacuum. We also introduce p = 2(γ − γ0)/γ0

as the measure of energy deviation, with γ the Lorentz factor of an electron in the electron
bunch, and γ0 the resonant energy which is given by

λ0 ≈ λw

1 + K2

2

2γ 2
0

, (1)

for a planar undulator, where the undulator parameter is K ≈ 93.4Bwλw with Bw the
peak magnetic field in Tesla and λw the undulator period in meter. We use ψ(θ, p,Z)

to stand for the electron distribution function. The FEL electric field is decomposed into
E(t, z) = A(θ,Z) ei(θ−Z) with A(θ,Z) being the slow varying envelope function. Note that
θ − Z = k0z − ω0t is the fast oscillating phase. To describe an electron bunch having both a
linear energy chirp and a second-order energy curvature, we write

γ = γ0 +
dγ

dt

∣∣∣∣
t=0

t0 +
1

2

d2γ

dt2

∣∣∣∣
t=0

t2
0 + · · · , (2)

the parameters μ and ν are introduced as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ = dγ

dt

2

γ0ω0

∣∣∣∣
t=0

ν = − d2γ

dt2

2

γ0ω
2
0

∣∣∣∣
t=0

,

(3)

characterizing the energy chirp and the energy curvature in the electron bunch, respectively.
The field envelope along the undulator can be determined as

A(ŝ, ẑ) =
∫ ∞

0
dξ̂A(ŝ − ξ̂ , 0)g(ŝ, ẑ, ξ̂ , α̂, β̂), (4)

with the newly introduced variables defined as ẑ = 2ρZ, ŝ = ρθ, ξ̂ = ρξ, α̂ = −μ/(2ρ2)

and β̂ = ν/(2ρ3), and the Green’s function g(ŝ, ẑ, ξ̂ , α̂, β̂) specified in [2]. Here, in the
definitions, ρ is the Pierce parameter [8].
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2.2. Coherent seed laser pulse

The integral representation in equation (4) allows us to evaluate numerically the radiation
along the undulator with arbitrary kinds of seed lasers at the undulator entrance. Assuming the
modes do not couple each other, this formulism can be used to study effects from high-order
modes [9]. This representation can also be used to study two-color operation in a high-gain
FEL [10].

If the seed laser is a fundamental Gaussian mode with a linear frequency chirp on it, the
expression of the FEL can be determined analytically. We assume the electric field of the seed
laser to be

Es(t, z) = E0 ei(k0z−ω0t) e−(iBl+Al)(t−z/c)2
e−iBc(t−z/c). (5)

Note that a time jitter on the seed laser can be considered by substituting t with t − tj .
At the undulator entrance the field can be written as

Es(t, z = 0) = E0 e−iω0(t−tj ) e−(iBl+Al)(t−tj )
2

e−iBc(t−tj ). (6)

Using the notation previously introduced, E = A ei(θ−Z) and neglecting the eiω0tj phase
constant, one obtains

A(ŝ, 0) = E0 e−Q(ŝ−ŝj )
2+iQc(ŝ−ŝj )−iQl(ŝ−ŝj )

2
, (7)

where Q = Al

ρ2ω2
0
,Qc = Bc

ρω0
,Ql = Bl

ρ2ω2
0

and sj = −ρω0tj .

2.3. FEL expression

The expression in equation (7) together with the Green’s function found in [2] allows us to
obtain a closed expression for the FEL as the following:

A(ŝ, ẑ) = E0
i1/6

2
√

ẑ

ec

√
a

e− b2

4a

[
erfi

(
b + aẑ

2
√

a

)
− erfi

(
b

2
√

a

)]
, (8)

where ‘erfi’ is the complex error function, and the functions a(ŝ, ẑ, α̂, β̂), b(ŝ, ẑ, α̂, β̂) and
c(ŝ, ẑ, α̂, β̂) are given explicitly in (A.1), (A.2) and (A.3). Regarding the properties of the
FEL light, such as the central frequency shift and the frequency chirp, it is useful to study
the phase of the envelope of the radiation. For this purpose, equation (8) can be seen as
the product of three functions: the exponential part ec−b2/(4a), the part with complex error
functions and the factor E0i1/6/(2

√
a
√

ẑ). Figure 1 shows an example of the phase of each
term, the dependence on ŝ is given mostly by the exponential part, and the erfi part is almost
constant where the amplitude of the envelope is large. For this reason the expression for the
phase of the exponential part is given in equation (A.5).

3. Seed laser pulse duration

In a high-gain self-amplified spontaneous emission (SASE) FEL, the FEL Green’s function
temporal duration defines the temporal coherent length. Yet, in a seeded FEL, the FEL
process starts with a coherent seed, hence, the Green’s function temporal duration would be
shorter than the initial coherent seed laser pulse duration to start with. Eventually, the Green’s
function temporal duration can be longer than the initial seed laser pulse duration. Therefore,
it is interesting to study different cases where the initial seed laser pulse temporal duration is
short or long compared to the Green’s function temporal duration evaluated at the exit of the
undulator.

3
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Figure 1. Comparison among the different contributions to the phase of equation (8) (blue dashed

curve): phase of ec−b2/(4a) as in equation (A.5) (yellow curve), phase of E0i1/6/(2
√

a
√

ẑ) (green
line) and phase of erfi[(b + aẑ)/(2

√
a)] − erfi[b/(2

√
a)] (red line). As a reference, the amplitude

of equation (8) in arbitrary units is shown as the black curve. (Colour online.)

According to equation (7), the seed laser squared temporal rms duration is σ 2
t,seed =

1
/(

2Qρ2ω2
0

)
. On the other hand, the Green’s function squared temporal duration is

σ 2
t,GF = ẑ

/(
18

√
3ρ2ω2

0

)
. In the following, we show that the linear energy chirp and the energy

curvature along the electron bunch have different effects on the FEL radiation depending on
the ratio between the Green’s function temporal duration and the seed laser pulse temporal
duration. We introduce the parameter

K = σ 2
t,GF

σ 2
t,seed

= Qẑ

9
√

3
(9)

to characterize the above-mentioned different cases. In the following, we will show that when
the seed laser is short, the FEL depends mostly on the Green’s function. This is in some sense
similar to a SASE FEL, which starts from shot noise. For the other extreme, when the seed
laser is long, for an electron bunch having energy chirp and energy curvature, different parts of
the electron bunch have different phases, and thus interference plays an important role. This
is an unique feature of a seeded FEL.

In this paper, the electron bunch is considered to be much longer than the seed laser, since
the Green’s function has been derived using the coasting beam model.

4. Properties of the FEL light

Different behaviors of the FEL radiation, characterized by the value of K introduced in
equation (9) are considered in this section. Figure 2 shows the amplitude of the FEL envelope
of equation (8) for different values of K and different values of the chirp and curvature
parameters α̂ and β̂. The seed laser parameters Qc and Ql are set to 0 as also for the jitter sj .
With our notation, a point moving at the velocity of the bunch is at ŝ equal to a constant, while
the seed laser is moving at the speed of light and it is centered at ŝ = ẑ/2. For α̂ = 0 = β̂, the
FEL group velocity sets the FEL pulse center at ŝ = ẑ/6 [5].

Figure 2(a) is the case with a very short seed laser. The peak position of the Green’s
function amplitude is almost independent of the chirp or the curvature, so the FEL envelope has

4
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Figure 2. FEL envelope amplitude with different α̂ and β̂: α̂ = 0, β̂ = 0 (green dashed);
α̂ = 0.1, β̂ = 7 × 10−3 (black); α̂ = 0.1, β̂ = −7 × 10−4 (red); α̂ = −0.02, β̂ = −2 × 10−4

(magenta); and α̂ = −0.05, β̂ = 10−3 (blue). (a) K = 1, ẑ = 12, (b) K = 0.1, ẑ = 12,
(c) K = 0.01, ẑ = 12, (d) K = 0.001, ẑ = 12. (Colour online.)

its maximum amplitude at almost the same location (ŝ ≈ ẑ/6) as for the case of α̂ = 0 = β̂.
With a longer seed laser as in figures 2(b) and 2(c), α̂ and β̂ start to play a more important role,
affecting both the group velocity and the gain of the FEL. In particular, figure 2(c) shows that
the amplitude peak of the FEL is shifted from the coordinate ŝ ≈ ẑ/6 for large values of α̂,
which indicates that the group velocity is smaller for a large absolute value of α̂. This is due
to the interference among the different phases of the Green’s function calculated at different
ŝ. In fact figure 3(a) shows that the amplitude of the Green’s function obtained at different ŝ

is almost constant while its phase relevantly changes more.
Finally figure 2(d) represents the case with a very long seed laser. In this case, when the

energy chirp and the energy curvature along the electron bunch are large, we obtain a strong
interference among different parts of the electron bunch, leading to a heavy change of the
FEL radiation shape. In fact figure 3(a) shows the amplitude and the phase of the Green’s
function with the parameters of the blue curve in figure 2(d) for two different values of ŝ.
The black curve refers to the seed laser amplitude. Although in the case of the red curve,

5
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ŝ−ξ̂
0 5 10 15 20

0

1

2

3

4

real

im
a
g
in

a
ry

(a) (b)

Figure 3. Interference for the long seed laser case. (a) Seed laser amplitude (black), Green’s
function for ŝ = −0.83: amplitude (blue solid) and phase (blue dashed), Green’s function for
ŝ = 1.85: amplitude (red solid) and phase (red dashed). Amplitudes of the seed laser and the
Green’s function are scaled. (b)

∫ x

0 dξ̂A(ŝ − ξ̂ , 0)g(ŝ, ẑ, ξ̂ , α̂, β̂) in the complex plane, with
ŝ = −0.83 (blue) and ŝ = 1.85 (red). To better compare the amplitude of the signals, the phase of
each curve has been shifted by a constant. (Colour online.)

the maximum amplitude of the Green’s function matches the maximum amplitude of the seed
laser, the amplitude of the radiation is lower compared to that of the blue curve case as shown
in figure 3(b). This is because the contribution given in the blue curve case are summed up
more coherently compared to those of the red curve case, as can be seen from the phase of
the Green’s functions (dashed blue and red curves). This can also be seen from figure 3(b),
which represents

∫ x

0 dξ̂ A(ŝ − ξ̂ , 0)g(ŝ, ẑ, ξ̂ , α̂, β̂) in the complex plane, with x varying from 0
to ẑ/2.

Figure 4 shows the frequency chirps estimated with equation (A.14) multiplied by −ω2
0ρ

2.
For a short seed laser, figure 4(a) shows a linear behavior for both α̂ and β̂ parameters. The
effect of α̂ on the linear frequency chirp is larger for shorter seeds. For a very short seed, the
FEL can acquire a large intrinsic chirp, i.e. the FEL radiation is chirped even in the case of
an energy unchirped electron bunch at undulator entrance. Equation (A.14) can be simplified
into the following expressions for very short seeds:

∂2IM

∂ŝ2
= −9

ẑ
+

9

Kẑ
+ 2α̂ +

(
2 − 7

3K
+

ẑ
√

3

6K

)
β̂√
3

(K → ∞). (10)

So, even for α̂ = 0, there is an intrinsic chirp −9/ẑ existing along the FEL pulse.
For the seed laser temporal duration similar to the temporal coherent duration determined

by the Green’s function at the undulator exit, equation (A.14) can be simplified as

∂2IM

∂ŝ2
= −27(2 + 5K)

49ẑ
+

3α̂

343
(165 + 38K) +

144K − 263

21609
ẑα̂2

+
302 − 141K

1029
ẑβ̂ +

1331K − 316

1715
√

3
β̂ (K → 1). (11)

In this case the intrinsic chirp developed on the FEL is smaller, and approaches → −27/(7ẑ)

for K → 1 and α̂ = 0.
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Figure 4. Frequency chirp of the FEL at ẑ = 12 as a function of the linear energy chirp parameter
α̂ along the electron bunch. (a) K = 1 (solid) and K = 0.1 (dashed). β̂ = 10−2 (red), β̂ = 0
(green) and β̂ = −10−2 (blue). (b) K = 0.01 (solid) and K = 0.001 (dashed); β̂ = 10−3 (red),
β̂ = 0 (green) and β̂ = 10−3 (blue).

The effect on the longer seeds is represented in figure 4(b). Equation (A.14) for a long
seed laser can be simplified as

∂2IM

∂ŝ2
= 6Kα̂ +

ẑα̂2

9
(1 − 9K) +

ẑβ̂

6
(4 − 9K) +

K − 2

4
√

3
β̂ (K → 0). (12)

For K = 0.001, α̂ gives a small effect on the frequency chirp. The main contribution due to
α̂ in equation (12) is the quadratic term, thus the chirp has the same sign for both positive and
negative α̂; β̂ presents a linear effect on the frequency chirp. The effect of β̂ is larger compared
to the effect of α̂ considering the order analysis introduced in [2]. The order analysis there
sets α̂ ∼ ε2, and β̂ ∼ ε3 with ε stands for a small quantity. With K = 0.01, α̂ and α̂2 give
comparable contributions to the chirp in equation (12). However, for a positive α̂, these two
contributions are summed, while for a negative α̂, they tend to cancel with each other, yielding
an asymmetrical behavior as shown in figure 4(b). The effect of β̂ is linear and considering
the order analysis is larger than the effect of α̂. The three regimes described regarding the
frequency chirp of FEL are characterized by the value of K.

5. Time-frequency FEL characterization

To characterize the longitudinal properties of the FEL pulse jointly in both time and frequency
domain, we introduce the Wigner distribution function,

W(z, t, ω) ≡
∫ ∞

−∞
Ẽ

(
z, ω − �

2

)
Ẽ∗

(
z, ω +

�

2

)
ei�t d�, (13)

where ∗ denotes the complex conjugate and

Ẽ(z, ω) ≡
∫ ∞

−∞
E(z, t) eiωt dt (14)
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Figure 5. The Wigner function plot at ẑ = 10 with K = 0.01 and β̂ = 0. (a) α̂ = −0.05,

〈ω〉 = 2.5 × 1013 rad s−1, 〈t〉 − z/c = 4.8 × 10−14 s and �ω/�t ≈ 5 × 1024 rad s−2.
(b) α̂ = 0, 〈ω〉 = −2 × 1011 rad s−1, 〈t〉 − z/c = 4.0 × 10−14 s and �ω/�t ≈ 2 × 1024 rad
s−2. (c) α̂ = 0.05, 〈ω〉 = −2.5 × 1013 rad s−1, 〈t〉 − z/c = 4.0 × 10−14 s and �ω/�t ≈ −3.1 ×
1025 rad s−2.

is the Fourier transform of the field without worrying about the normalization. The Wigner
function in equation (13) is useful to evaluate the expectation values and moments, we will
indicate with 〈F̂〉 any quantity evaluated as

〈F̂〉 =
∫ ∞
−∞

∫ ∞
−∞ dt dω W(t, ω, z)F̂∫ ∞

−∞
∫ ∞
−∞ dt dω W(t, ω, z)

. (15)

For the FEL radiation, the Wigner function of t and ω is evaluated numerically.
Figure 5 shows the plots of the Wigner function for K = 0.01. The different effect

of a positive or a negative α̂ can be seen by the different frequency chirp in the positive
α̂ and the negative α̂ cases. The values for the frequency shift and chirp obtained from
the Wigner function are compared with the values calculated with equations (A.13) and
(A.14). The frequency and frequency chirp from equations (A.13) and (A.14) are for
figure 5(a) 〈ω〉 = 2.5 × 1013 and �ω/�t = 4.3 × 1013; for figure 5(b) 〈ω〉 = −2 × 1011 and
�ω/�t = 1.6 × 1024 and for 5(c) 〈ω〉 = −2.5 × 1013 and �ω/�t = −3.3 × 1025. For an

8
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Figure 6. The Wigner function plot at ẑ = 10 for K = 0.001. (a) α̂ = 0 and β̂ = 0. (b) α̂ = −0.05
and β̂ = 0.001.

even longer seed laser with K = 0.001, figure 6 shows how the energy chirp and the energy
curvature can distort the FEL radiation.

6. Frequency shift and chirp on the seed laser

In this section, we consider the effect on the FEL originated from a central frequency shift
and from a frequency chirp on the Gaussian seed laser, by means of the Qc and Ql parameters
introduced in equation (7). A laser frequency shift Qc degrades the gain of the FEL especially
in the case of a long seed laser due to its small bandwidth. In contrast, a short seed laser has a
broad spectrum which can support the FEL start up even with a large central frequency shift.
A frequency chirp on the seed laser gives it a phase curvature. Referring to figure 3(a) the
addition of a phase curvature to the seed laser can lead to a larger FEL power for a particular
slice with a certain ŝ coordinate, while for other slices far from that ŝ will result in a smaller
amplitude. In this way, the FEL pulse can be shorter than the seeded laser pulse. In particular
the quantities Qc and Ql can be chosen in order to compensate the Green’s function phase
curvature when the seed laser peak amplitude matches the Green’s function peak. The values
that satisfy this condition are

Qc =
√

3

z
− zα

2
− z − √

3

144
zα2 − 12 − 2

√
3z − 3z2

108
β − z2αβ

216
√

3
+

z3(17
√

3 + 3z)β2

77 760
(16)

Ql = − 9

2z
− α +

z2

72
αβ +

4
√

3 + 3z

18
β − z2(

√
3 + z)

864
β2. (17)

In this way the phase of the convolution product is constant when the peak amplitude of the seed
laser matches the peak of the Green’s function. In this condition, as long as ŝ is far from the
compensated slice, the phase of the Green’s function for different ŝ is not compensated leading
to a smaller FEL gain. Figure 7(a) shows the superposition of the phases for the seed laser and
the Green’s function. Figure 7(b) shows the comparison between the FEL envelope amplitude
obtained for the unchirped seed laser and a chirp seed laser with Qc and Ql of equations (16)
and (17). In the latter case the FEL pulse is shorter than the seed laser. This result can

9
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Figure 7. Frequency chirp and central frequency shift on the seed laser with K = 0.01, ẑ = 10,

α̂ = 0.05 and β̂ = −10−3. (a) Seed laser amplitude (black), Green’s function for ŝ = 1.50 (blue),
ŝ = 1.87 (red), ŝ = 2.25 (cyan). Amplitude (solid), phase with chirped seed laser (bold dashed),
phase with unchirped seed laser (dashed). (b) FEL amplitude with unchirped seed laser (black)
σω = 1013 rad s−1, σt = 48 × 10−15 s; FEL amplitude with chirped seed laser (red) σω = 5 ×
1014 rad s−1, σt = 12 × 10−15 s.

be very useful for applications requiring a very short FEL pulse without constrains on the
bandwidth.

7. Discussion

In this paper, we study the impact on the FEL radiation from an initial energy chirp and an
energy curvature along the electron bunch. The ratio of the initial seed laser pulse duration
and the Green’s function temporal duration is an important parameter. The impact can be very
different for a seeded FEL starting from a long seed laser and that from a short laser seed
as shown in this paper. In the case of a short seed laser the behavior of the FEL radiation
is close to that of the Green’s function, presenting an intrinsic frequency chirp; and a linear
energy chirp on the electron bunch leads to a linear effect on the frequency chirp of the
radiation. For a long laser seed, the interference among the radiation generated from different
parts of the electron bunch plays an important role. In fact the FEL amplitude is larger when
the different contributions are summed up coherently during the amplification process. With
both energy linear chirp and curvature on the electron bunch, a strong distortion can develop
along the FEL. When the seed laser temporal duration is comparable to the Green’s function
temporal duration at the undulator exit, the linear energy chirp on the electron bunch has an
asymmetrical effect on the frequency chirp on the FEL light. Furthermore, we propose to use
an opportune frequency chirp and a central frequency shift on the seed laser to obtain a large
bandwidth short FEL pulse.
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Appendix. FEL envelope in the undulator

The integral in equation (4) can be completed and results in a closed form, using the Green’s
function found in [2], as long as the seed laser has Gaussian amplitude with a frequency
shift and a frequency linear chirp. If the seed laser has frequency curvature, the FEL can be
evaluated numerically.

The FEL can be evaluated using equation (8) where

a = −Q − iQl − 9 i
1
3

ẑ
− iα̂ + i

12ŝ − ẑ

6
β̂ +

i
5
3

36
ẑ2α̂β̂ − i

4
3

432
ẑ2(1 + i

1
3 ẑ)β̂2, (A.1)

b = −iQc + 2(Q + iQl)(ŝ − ŝj ) + 3i
1
3 +

3

ẑ
+

4ŝ + ẑ

2
iα̂ − 1

12
iβ̂(6ŝẑ + (6ŝ − ẑ)(2ŝ + ẑ))

+
i

4
3 ẑ

72
(i

1
3 ẑ − 1)α̂2 − 6ŝ + ẑ

216
ẑ2i

5
3 α̂β̂ +

i
4
3 ẑ2

216
β̂2

(
ŝ + ẑ

1 + 9i
1
3 ẑ

60

)
, (A.2)

c = iQc(ŝ − ŝj ) − (Q + iQl)(ŝ − ŝj )
2 − 1

2
+

3i
1
3

4
ẑ − i ŝẑα̂

+
iẑ

324
(162ŝ2 + 9ŝẑ − 2ẑ2)β̂ +

i
4
3

216
ẑ2

(
ŝ − ẑ

1 − i
1
3 ẑ

12

)
α̂β̂

+
i

4
3 ẑ2

2592

((
1 − i

1
3 ẑ

) (
4ẑ2

45
− 6ŝ2

)
− ŝẑ

(
1 + i

1
3 ẑ

))
β̂2, (A.3)

we give further expressions for the real and imaginary part of the exponential factor in
equation (8). The real part gives information on the gain and the deformation of the seed laser
envelope, the phase gives information on the frequency shift and frequency chirp of the FEL
radiation

RE ≡ Re

(
c − b2

4a

)
= H +

DF 2 − DG2 − 2EFG

D2 + E2
(A.4)

IM ≡ Im

(
c − b2

4a

)
= I +

EG2 − EF 2 − 2DFG

D2 + E2
(A.5)

with

D = −4Ql − 18

ẑ
− 4α̂ +

(
8ŝ − 2ẑ

3

)
β̂ +

1

18
ẑ2α̂β̂ − ẑ2β̂2

√
3 + ẑ

216
(A.6)

E = −4Q − 18
√

3

ẑ
− ẑ2α̂β̂

6
√

3
+ ẑ2β̂2 1 +

√
3ẑ

216
(A.7)

F = 3
√

3

2
+ 2Q(ŝ − ŝj ) +

3

ẑ
+ ẑα̂2 1 − √

3ẑ

144
+ ẑ2α̂β̂

6ŝ + ẑ

144
√

3
− ẑ2β̂2

432

(
ŝ + ẑ

1 + 9
√

3ẑ

60

)

(A.8)

G = 3

2
− Qc + 2Ql(ŝ − ŝj ) +

4ŝ + ẑ

2
α̂ + ẑα̂2 ẑ − √

3

144
+

ẑ2 − 12ŝ2 − 10ŝẑ

12
β̂

− ẑ2 6ŝ + ẑ

432
α̂β̂ +

ẑ2β̂2

144
√

3

(
ŝ + ẑ

1 + 3
√

3ẑ

60

)
(A.9)
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H = Qc(ŝ − ŝj ) − Ql(ŝ − ŝj )
2 +

3ẑ

8
− ŝẑα̂ +

ẑ

324

(
162ŝ2 + 9ŝẑ − 2ẑ2) β̂

− ẑ4α̂β̂

10368
+

√
3

432
ẑ2

(
ŝ − 2ẑ − √

3ẑ2

24

)
α̂β̂

+
β̂2ẑ2

5184

(
(
√

3 − ẑ)(4ẑ2 − 270ŝ2)

45
− ŝẑ(

√
3 + ẑ)

)
(A.10)

I = −Q(ŝ − ŝj )
2 − 1

2
+

3
√

3

8
ẑ −

(
ŝ − ẑ

12
+

ẑ2

4
√

3

)
ẑ2α̂β̂

432

+

(
(
√

3ẑ − 1)(4ẑ2 − 270ŝ2)

45
+ ŝẑ(1 +

√
3ẑ)

)
ẑ2β̂2

5184
. (A.11)

For an unchirped electron beam equation (A.4) has maximum at

ŝpeak = ŝj +
ẑ

6
+

1

3
√

3
+

3Ql(
√

3 + Qcẑ) − Q(3 +
√

3Qcẑ)

6(6
√

3Q + Q2ẑ + Q2
l ẑ)

, (A.12)

and we define the central frequency shift and frequency chirp with the first and the second
derivatives on ŝ of equation (A.5), and then evaluate at ŝ = ŝpeak. For a seed laser with
Qc = 0,Ql = 0, and ŝj = 0 and using K as defined in equation (9), we have

∂IM

∂ŝ
= − 3

√
3K

2z + 3Kz
+

(
24K

2 + 3K
− 2

√
3z +

6 + 12K − 3
√

3(2 + 3K)z

1 + 3K(1 + K)

)
α

12
√

3

+
β

72

(
− 10

(2 + 3K)2
+

1 + 4
√

3z

2 + 3K
+ 2

(
4 + z2))

+
β

72

(
−7(1 + 3K) − √

3(1 + 2K)z + (2 + 3K)z2

1 + 3K(1 + K)

)
(A.13)

∂2IM

∂ŝ2
= − 27K2

z + 3Kz + 3K2z
+

6K + 27K2 + 36K3 + 18K4

(1 + 3K(1 + K))2
α +

1 − 9K2(1 + K)

(1 + 3K(1 + K))3

zα2

9

+

(
4 − 14

2 + 3K

)
β

2
√

3
+

2
√

3 + (4 + 3K)z

6(1 + 3K(1 + K))
β − 2K(1 + 2K)

(1 + 3K(1 + K))2

β√
3

− 2
√

3(1 + 6K) + 3(2 + 3K)z

6(2 + 3K)(1 + 3K(1 + K))2
K2β. (A.14)
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